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DIFFUSION OF HEAT FROM A LINE SOURCE IN ISOTROPIC TURBULENCE1 
By MAHINDER S. UBEROI and STANLEY CORRSIN 

SUMMARY 

An experimental and analytical study has been made of some 
features of the turbulent heat diflusion behind a line heated wire 
stretched perpendicular to a flowing isotropic turbulence. The 
mean temperature distributions have been measured with sys- 
tematic variations in wind speed, size of turbulence-producing 
grid, and downstream location of heat source. The nature of 
the temperature jluctuation.Jield has been studied. 

A comparison of Lagrangian and Eulerian analyses for dif- 
fusion in a nondecaying turbulence yields an expression -for 
turbulent-heat-transfer coe$icient in terms of turbulence velocity 
and a Lagrangian “scale.” 

The ratio of Eulerian to Lagrangian microscale has been de- 
termined theoretically by generalization of a result of Heisenberg 
and, with arbitrary constants taken frozm independent sources, 
shows rough agreement with experimental results. 

A convenient form has been deduced for the criterion of inter- 
changeability of instantaneous space and time derivatives in a 

flowing turbulence. 
INTRODUCTION 

One of the most striking aspects of turbulent motion in 
fluids is its dispersive property. This “convective diffusion,” 
illustrated by the general statistical tendency of (noncon- 
tiguous) fluid elements to get farther apart with increasing 
time, was probably first observed long before the era of 
analytical fluid mechanics. An analytical start on this 
problem was not made, however, until the now-classic work 
by Taylor in 1921 on diffusion by continuous movements 
(reference 1). Not only did this paper lay a groundwork for 
the study of turbulent diffusion but it also represented a 
forward step in the ideas essential to development of a gen- 
eral statistical theory of turbulence, a field which had scarcely 
progressed since Reynolds’ original formulation of the equa- 
tions of motion for a flow in which mean and fluctuating 
parts could be distinguished. 

The diffusive action of a turbulent flow may manifest itself 
in various ways, depending upon the initial and/or boundary 
conditions and upon the interests of the observer. The fol- 
lowing possible measures of the diffusive powers are neither 
exhaustive nor mutually independent : 

(1) The average rate of dispersion of particles from a fixed 
source 

(2) The average rate of increase of spacing between differ- 
ent particles 

’ Supersedes NACA TN 2710, “Diffusion of Rest From B Line Source in Isotropic Turbu 
lenee” by Mahinder S. Uberoi and Stanley Corrsin, 1952. 

(3) The average rate of transport of particle concentration 
under a given mean concentration gradient 

(4) The average rate of increase of the length of a fluid line 
(5) The average rate of increase of the area of a fluid sur- 

face 
The word “particles” means simply indelibly tagged fluid 
elements: much smaller than the smallest length associated 
with the krrbulence. 

The present report is concerned primarily with measure 
(I). The measurements have all been made in the thermal 
wake of a long thin heated wire mounted perpendicular to 
an isotropic turbulent air flow and producing no turbulent 
wake. Here the tagging is thermal, and the degree of in- 
delibility (negligibility of molecular diffusion) is one of the 
matters to be investigated. 

The diffusive property (for scalars) of a turbulent flow is 
apparently a secondary characteristic at least in the sense 
that it need not explicitly enter the dynamical problem. The 
diffusion may be regarded as a kinematic phenomenon, to be 
deduced from the dynamical solution to the problem if and 
when the latter is obtained. Thus the objective of research 
on turbulent diffusion may be to seek a connection between 
the diffusive and the dynamical statistical variables, even 
before the complete dynamical theory is available. 

Measure (3) is usually termed the “turbulent transport” 
or “transfer” problem. Although of extensive practical im- 
portance, it has not yet been subjected to genuine theoretical 
study. 

Most of the semiempirical “theories” of turbulent transport, 
for both scalar and vector properties, employ an Eulerian 
formulation of the basic equations, and up to now they. have 
been unable to relate the turbulent transport correlation to 
other statistical functions describing the flow. Taylor 
(reference 1) showed that in the simple case of a homogeneous 
field of isotropic turbulence, and even in a decaying isotropic 
turbulence (reference 2), a Lagrangian formulation of the 
transport (i. e., diffusion; the terms will be used interchange- 
ably) problem leads to some important results.2 

Up to the present time little theoretical or experimental 
work has been done to find relations, if any, between the 
Lagrangian statistical measures of a turbulent field with its 
Eulerian statistical measures. Since turbulence dynamics 
seems best handled in the latter terms and turbulent diffusion 
in the former, it is evident that such a connection is impor- 

2In his tensorial generalization of Taylor’s work on case (l), Bstchelor (reference 3) has 
chosen to ~11 this an “Euleri@’ analysis, describing onlycnse (2) BS “Lagranglsn.” In 
keeping with previously accepted nomenclature, both cases are Lsgranglan, (1) involvinga 
single part& and (2) involving B p&. In fact, we (2) might be termed B mixed (Eulerisn 
and Lagrangian) problem. 
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tam. Hence, one of the purposes of the present experiments 
has been to compare the magnitudes of some of these quanti- 
ties under variations in the turbulent field. For example, 
the postulates of Taylor and Heisenberg on a relation between 
Lagrangian and Eulerian microscales can be examined and, 
in corrected form, compared with experiment. 

The turbulent diffusion from a fixed line source can be set 
up analytically as an ordinary (Eulerian) ‘Lheat-transfer” 
problem, permitting a start to be made in relating measures 
(1) and (3) of the diffusive power of a turbulent flow, under 
certain simplifying assumptions . 

Measures (4) and (especially) (5) may well be classed as 
characteristic of the “turbulent-mixing” problem rather than 
diffusion in the common connotation. 

Experimental work on diffusion from a fixed local source 
in a turbulent flow has been meager. In isotropic turbulence, 
there have been the measurements of Schubauer (reference 
4), Simmons (reported by Taylor in reference 2), Dupuis 
(reported by Kampe de Feriet in reference 5), Frenkiel (refer- 
ence B), and Collis (reference 7). Of these, only the data of 
Simmons and Collis are extensive enough to permit confident 
computation of the Lagrangian correlation function. In 
turbulent shear flow, Skramstad and Schubauer (reference 8)) 
Dryden (reference 9), and the present authors (reference 10) 
have measured distributions close to a source; Kalinske and 
Pien (reference 11) and Van Driest (reference 12) have made 
measurements somewhat farther downstream. 

None of these studies was repeated with a systematic 
variation of the properties of the turbulence. In spite of 
the poor precision inherent in this type of measurement, it 
was hoped that such an approach would at least show up 
some general trends in the relations between Eulerian and 
Lagrangian variables. 

This investigation has been conducted at the Aeronautics 
Department of the Johns Hopkins University under the 
sponsorship and with the financial assistance of the National 
Advisory Committee for Aeronautics. The authors would 
like to acknowledge the assistance of Messrs. Alan Kistler, 
George Stierhoff, and Allen Gates and Miss Patricia O’Brien, 
as well as the helpful criticism of Dr. Francis H. Clauser and 
Dr. C. C. Lin. 

SYMBOLS 

c root-mean-square molecular velocity 
CP specific heat per unit volume at constant pres- 

sure 
.f b-P) Eulerian velocity correlation coefficient (nota- 

tion of Von K&man and Howarth) 

HG~~c,~ %dy 
s 
ii H*EE m 

~PC, o fWE S j width of rectangular heat pulse 
k thermal conductivity 
kr turbulent-heat-transfer coetllcient 

L Eulerian scale (L = imf(r)dr) 

L Lagrangian scale (LL = Jm&(7) ds) 

LV Lagrangian scale for nondecaying and decay- 

ing turbulence (& = ~=i,(n)dv) 
1 mixing length 
M grid mesh size 

MIE S oa&W& 

WI probability density of fluctuating temperature 

:L 
static pressure 
turbulence Reynolds number based on Euler- 

ian scale (RL==e) 

,R _ =R (t $7 v,T ),t)v(t-T) 
v’(t)v’(t- 7) 

R~(T) Lagrangian correlation coefficient for nonde- 
caying turbulence 

R,(v) Lagrangian correlation as a function of rl for 
nondecaying and decaying turbulence - 

turbulence Reynolds number based on Euler- 

ian microscale (I&=$) 

scalar distance between two points 

s average on-center spacing of pulses 

+EJp (3XJ-j” 

time 
mean velocity in x-direction 
instantaneous velocity fluctuation in x-direc- 

tion 

mean velocity in y-direction 
instantaneous velocity fluctuation in y- 

direction 

instantaneous velocity fluctuation in z- 
direction 

dist,ance traveled in x-direction by a fluid 
particle 

distance downstream from grid 
location of heating wire 

distance traveled in y-direction by a fluid 
particle 

root-mean-square displacement of a fluid 

particle in y-direction (Y’ =fl) 
root-mean-square displacement of a molecule 
distance in direction of measured diffusion 
distance in direction of heating wire 
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S t dL0 = t, V’WE 8 instantaneous temperature (measured above 
ambient room temperature) 

6 mean temperature. --. 
Go maximum mean temperature at a cross sec- 

tion, a function of Ax 
29 instantaneous temnerature difference 

temperature difFerence of rectangular heat 
pulse 

K 

A 
x 

dimensionless empirical constant 
mean free path of a molecule 
Eulerian microscale of turbulence 

Lagrangian microscale of turbulence for non- 

decaying turbulence (X, = (_ ~,,(o)>l’z) 

Lagrangian microscale of turbulence for 
nondecaying and decaying turbulence 

kinematic viscosity 

P density 

;-) 
time difl’erence 
mean value or ensemble average 

Subscripts : 
max maximum 
min minimum 

EQUIPMENT AND PROCEDURE 

AERODYNAMIC EQUIPMENT 

The wind tunnel (fig. 1) is an open-return NPL type tunnel 
with a 2- by 2-foot working section and a free-stream turbu- 
lence level of d/f7=0.06 percent and u’/g=O.O5 percent at 
a mean velocity of 26 feet per second. The turbulence- 
producing grids were as follows: 

Square to round transition sections-.‘+ 
7 

“Cheesecloth screen 
All other screens-X24 wire mesh 

Over-all length = 429 ft 

The standard deviation of the wake could then be com- 
puted from the spacing of these two bright lines, with the 
assumption of a Gaussian distribution. Since the closest 
points of traverse in the turbulent cases were g inch (63 wire 
diameters) from the heat source, this was probably a reason- 
able assumption. 

FIGURE I.-Sketch of open-return wind tunnel. As pointed out by Taylor (reference 2), the molecular and 

I--. - 

They were mounted in turn at the upstream end of the work- 
ing section. 

The heat source was an 0.008~inch-diameter platinum wire 
stretched vertically across the tunnel at various distances 
from the grid. It was heated by direct current to tempera- 
tures between 500’ and 700’ C, with the latter figure only 
at the highest operating velocity of 38.0 feet per second. 
The wire Reynolds numbers at this condition and at the two 
other velocities were as follows: 

A preliminary investigation was made without grids to 
insure that these operating conditions did not generate a 
vortex street downstream of the heated wire. 

With the grids in place, the mean momentum wake became 
practically undetectable with total-head tube and manometer 
at distances greater than 1 or 2 inches downstream of the 
heating wire. 

MEASURING EQUIPMENT AND PROCEDURES 

The mean-temperature distributions were measured with a 
Chromel-Alumel thermocouple and a Leeds and Northrup 
type K-2 potentiometer. The cold junction was kept out- 
side of the wind tunnel. 

The shadowgraph technique was used to photograph the 
laminar thermal wake close to the source with no grid in the 
wind tunnel. This information was applied to the problem 
of “correcting” the thermal wake in turbulent flow for the 
effects of molecular diffusion and of finite source size. Figure 
2 (a) is a shadowgraph of the wire wake with no grid in the 
tunnel; figure 2 (b) is a typical time exposure with grid- 
produced turbulence. A resistance-thermometer traverse of 
the laminar wake in a flow of very small turbulence showed 
that the temperature profile had already become very nearly 
Gaussian at a distance of 1 inch (125 wire diameters) down- 
stream. The white lines on the sides of the dark wake 
shadow in figure 2 (a) correspond to the minimums in the 
second derivative of the density profile. For small tempera- 
ture differences these coincide with the maximums in the 
second derivative of the temperature profile. Although the 
temperature differences are not small in the immediate 
vicinity of the wire, this condition is reasonably well satisfied 
at relatively small values of Ax as evidenced by the parabolic 
spread of this laminar wake. 
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(a) Tzo grid in tunnel. 
(b) Grid-produced turbulence. 

FIGURE 2.-Shadowgraph time exposure of wire wake. 

the turbulent diffusive phenomena are statistically inde- 
pendent, so that the squares of the standard deviations due 
to these two effect,s are additive. Hence the wake spread 
due to turbulence alone, from a true line source, was obtained 
by subtracting the square of the standard deviation of the 
laminar wake (computed from the shadowgraph) from the 
square of the standard deviation of the total wake (from 
thermocouple traverses with grid turbulence present) at all 
stations. This difference was the square of the standard 
deviation of the desired phenomena. All wake-spread data 
presented in the next section have been corrected in this 
fashion. 

Parenthetically, it should be remarked that the laminar 

wake in figure 2 (a) spreads parabolically within the limits 
of precision, from at least 1 inch on, so that the effects of 
density differences on the flow phenomena must have been 
negligible for this investigation. 

The transverse turbulence levels v’/ii behind the grids 
were obtained from the initial rate of spread of th.e mean 
thermal wake (method due to Schubauer (reference 4)) after 
the effects of molecular spread and finite source had been 
removed. The resulting levels were somewhat higher than 
those obtained with a hot-wire anemometer but were used 
because of their consistency with the rest of the measured 
cliff usion curve. 

Free-stream velocity fluctuations (without grids) and the 
wake temperature fluctuations (with grids) were measured 
with the hot-wire anemometry equipment described in refer- 
ence 10. The wires were 0.00025-inch platinum etched 
from Wollaston; the compensated response of the system 
was flat within f2 percent over a frequency range from 3 
to 12,000 cycles per second. 

Oscillograms of the temperature fluctuations were recorded 
by photographing a blue oscilloscope tube with fast 35- 
millimeter film in a General Radio type 651-AE camera. 

Probability densities of the temperature fluctuations at 
fixed points in the mean thermal wake were determined 
from photodensitometer traverses of time-exposure photo- 
graphs of a short-persistence (0.001 set) blue oscilloscope 
tube with the temperature fluctuations on one pair of plates 
and a 30,000-cycle-per-second sweep on the opposite plates. 
The technique is essentially that used by Simmons and 
Salter (reference 13). 

EXPERIMENTAL RESULTS 

MEAN THERMAL WAKE 

Complete mean-temperature wakes behind a line source 
of heat were measured for 10 different conditions. Arranged 
to indicate the systematic. variation of one parameter at a 
time, these conditions were as follows: 

l-in. grid; Ff=43.4; F, fPS. 8. 5 
25. 6 
38.0 ___- 

f7=25.6 fps; ?[=43.4: grid, in.. .__ 1 
!4 
?4 --___ 

??=25.6 fps; ‘:f=86.1; grid, in 1 

F=25.6 fps; M-in. Frid; .?./ici . . . ..__ 
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1.6 1.2 .8 .4 0 
f, in. 

t 

.4 .8 1.2 1.6 

0 .2 .4 .6 .8 
y, in. 

(a) $=15, $=43.4, N=l inch, and c=25.6 feet per second. 

(b) $=39, s=SS.l, M=i inch, and g=25.6 feet per second. 

FIGURE 3.-Experimental scatter; temperature behind line source of 
heat. 

Here u is the mean velocity, M is the grid mesh size, and 
x0 is the heat-source location measured from the grid. Since 
some individual cases enter as elements in two sequences, 
the total number of elements is more than 10. 

Two of the many mean-temperature traverses in the 
y-direction (perpendicular to mean flow and to source line) 
are shown in figure 3 to give an idea of the amount of exper- 
imental scatter. The upper traverse was the worst of the 
lot, even showing an apparent skewness which was not 
borne out by the investigation as a whole. The lower trav- 
erse is more nearly typical of the measured temperature dis- 
tributions from which the standard deviations of the mean 

.E 3- 

.E >- 

Y' 
R 

.4 

.2 

0 

0 38 
q 25.6 6 0 8.5 o;o 

0 q Bo: q o 
0 q o 0 0 

0: 

0 00 

B o 

GF" I I I I 
IO 20 

I 
30 40 .' 50 

ax 
M  

FIGURE 4.-Spread of heat from a line source. $‘=43.4, M=l inch. 

1.6 M 
(in.1 

0 I 
1.2 0 l/2 

0 l/4 0 

0 

0 

! I I I 
0 50 100 150 200 

AX 
M 

FIGURE 5.-Spread of heat from a line source. $=43.4, u=25.6 feet 

per second. 

thermal wake were computed. By comparison with the 
reference curve, it is seen to be essentially Gaussian. This 
was the case for temperature profiles at all stations. Since 
the virtually Gaussian character of such a wake has already 
been established by several of the earlier publications, there 
seemed to be no point in reproducing here all of the large 
number of traverses measured. 

The mean-thermal-wake spread for the 10 different con- 
figurations studied is given in figures 4 to 7 as plots of cor- 
rected standard deviation Y’ against distance from the heat 
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FIGURE 6.-Spread of heat from a line source. -$=SS.l, 0=25.6 feet 

per second. 
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M 
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0 l/2 0 
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ax 
I 

FIGURE 7.-Spread of heat from a line source. z= 172.25, vi= 25.6 

feet per second. 

source Ax. Each point in these figures corresponds to a 
complete transverse temperature traverse. 

In order to have values of transverse turbulence level u’m 
consistent with the thermal-wake behavior, these values 
were determined from the initial angle of spread of the cor- 
rected wake standard deviation (references 2 and 4) instead 
of from direct hot-wire anemometer measurements. The 
results are plotted in figure 8. Since these represent an 
insufficient number of points per grid to permit the drawing 
of reliable curves, some simplifying assumptions were made 
based upon the results of several more-detailed turbulence- 
decay investigations. (S ee references 14 to 20. The perti- 
nent results of references 14 to 16 are summarized in refer- 

14x103 
I 

12 

I 

M 
(in.) 

IO 
0 I 
0 l/2 
0 l/4 

8- 

6- 

I I I 
0 

I 
20 40 60 80 rot 3 120 140 160 180 200 220 

M 
(in.) 

--. 
X,/M 

43.4 8.5 2.0 
43.4 25. 6 2.0 
43.4 38.0 2.0 
43.4 25.6 2.0 
43.4 25. 6 2.0 
86.1 25. 6 1. xl 
86. 1 25. 6 1.40 
86.1 25. 6 1.30 

172.3 25.6 1.05 
172.3 25.6 .95 

ii 
UPS) 

FIGURE 8.-Decay of turbulence as determined by thermal wake of a 
line source. 

ence 17.) In the light of these papers, it was assumed that 
the decay curves had a common apparent origin and that 
this was obtainable by drawing the best straight line for all 
the available points, independent of the differing wind speeds 
and mesh sizes. In computing any individual Lagrangian 
correlation function from the corresponding wake history, 
the turbulence decay rate was assumed to be given by the 
line drawn through this common origin and the specific, tur- 
bulence value giving the measured initial spread angle for 
this wake. This is, of course, a very rough procedure, but 
the experimental scatter in this whole method of determin- 
ing Lagrangian correlation functions is so great that a more 
extensive study of decay (including the resolution of incon- 
sistencies between wake method and hot-wire method) 
seemed unwarranted at this time. 

TEMPERATURE FLUCTUATIONS 

Distributions of temperature-fluctuation level i+‘/e in the 
thermal wake have been measured by using the hot-wire 
nnemometer as a resistance thermometer, that is, at a 
current low enough to render the sensitivity to velocity 
fluctuations negligible compared with the sensitivity to tem- 
perature fluctuations (reference 21). A representative dis- 
tribution of i+‘/G in the x-direction is given in figure 9. Typ- 
cal transverse distributions are given in figures 10 (a) and 
10 (b). It is clear that the temperature-fluctuation inten- 



I.2 - 

1.0 - 

.a - 
3’ Y 
8 

.6 - 

.4 - 

.2 - 

- 

DIFFUSION OF HEAT FROM A LINE SOURCE IN ISOTROPIC TURBULENCE 7 

0 

0 

0 

0 

0 

0 0 

L I I I I I I I 
0 10 

I 
20 

I 
30 40 50 60 70 80 90 

Ax. in. 

FIGURE 9.-Temperature fluctuations at x,=43 inches, 1If = 1 inch, and --- 
7=25.6 feet per second along wake axis. 
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(a) Ax=10 inches. 
FIGURE lO.-Temperature fluctuations behind a line heat source at 

$=43, &I=1 inch, and i?=25.6 feet per second. 

sity changes very little with increasing values of Ax. A 
rough explanation of the very high values of 8’/e (com- 
pared with the concomitant turbulence level, for example) 
in terms of the highly intermittent structure of the thermal 
wake has been given in reference 10 and will be discussed 
in more detail later in this report. This intermittency is 
shown very clearly in figure 11, a series of temperature 
oscillograms recorded at two different positions across the 
thermal wake for a fixed value of Ax and at two different 

(b) Az=i’O  inches. 
FIGURE lO.-Concluded. 

Wake center 
SR’DgjO 

x,=40in. Ax=lOin. ~=25,6ft/sec M=Iin. 
. . 

-I= 

x0 =40 in. Ax=10 in. fl= 25.6 ft/sec M-lin. 

Wake center x0 = 40 in. Ax=70 in. u= 25.6 ff/sec hf= I in. 

FIGURE Il.-Oscillogram records and normalized probability density 
of temperature fluctuations. Film speed, 1 foot per second. 

values of Ax with y=O. The one-sided and pulse character 
of the instantaneous temperature at a fixed point in space is 
also demonstrated by its probability density. 

THEORETICAL CONSIDERATIONS 

HOMOGENEOUS STEADY TURBULENCE AT REST 

For a nondecaying incompressible turbulence with no 
mean motion, Taylor (reference 1) was followed in getting 
an expression for the mean tune rate of diffusion in the y- 
direction (say) from a fixed source as measured by the 
second moment of the probability density of the diffusion, 
that is, the mean-square particle displacement m: 
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= 2v@) 
s 

1 w(tl)dtl 
0 

The bar denotes ensemble average. 
Taking w(l) inside the integral, interchanging the processes 

of integration and averaging, and introducing the Lagrangian 
(auto) correlation coefficient (following the fluid particle), 
where 7=t--tl, 

Rv(T) = 1) (4 v 0 -2) 
2 

there results 
y2=27 1 SS ‘R&)&dT (1) 

0 0 

This is Taylor’s form. Integration by parts yields a form 
like that in the work of Kampe de Feriet (reference 5): 

y’=27 .I‘ ’ (t- T)Rp(T)dT 
0 

(2) 

In this Lagrangian analysis, v(t) is the velocity of a fluid 
particle in the y-direction at time t; v(t--7) is the velocity of 
the same particle at time t-T. Corresponding expressions 
can be written for the rate of diffusion in any direction. 

Diffusion from an infinite line source, the case to be 
discussed here, is a two-dimensional problem in the mean, 
and, in addition to equation (2), 

x2’ 22 S ’ (t- T)R,(T)dT 
0 

(3) 

A tensorial generalization of these concepts has been given 
b;yatchelor (reference 3) dealing with the behavior of 
XiXj(t) where X, and X1 are any two of the orthogonal 
displacements of the particle at time t. 

It should be noted that this analysis gives no information 
on the shape of the probability density of Y(t) or of X(t). 
In fact there still exists no theory for these. However, 
experiments in flowing turbulence (the case to be considered 
next) show Gaussian density, within the experimental 
precision, for Y(t) at all values of t. 

For this stationary random process, Taylor (reference 1) 
introduced the concept of the Lagrangian “scale,” 

L&= 
J 

‘m R,(T)dr 
0 

(4) 

These have the dimensions of time and are characteristic 
constants of the system. 

In his later work on the (Eulerian) dynamics (reference 2), 
Taylor had occasion to introduce another measure of the 

correlation function, which he called the “microscale.” 
Applying the same geometrical concept to the present 

-function, the Lagrangian microscale 

2 
‘:=-R,“(o) (5) 

is simply the T-intercept of the vertex-osculating parabola 
of the even function Rr(7). The kinematic significance is 
clearly shown by a series expansion of v(t +T) in R,(T): 

But v2=Constant, so that 

(‘3) 

From equations (6) and (5), the Lagrangian microscale for 
w(t) is 

(7) 

TURBULENCE IN A FLOWING MEDIUM 

The dictates of both practical interest and experimental 
feasibility require analysis of the diffusion when there is a 
mean velocity n relative to the source. Since the diffusion 
phenomenon is linear, the probability density (mean-concen- 
tration distribution of tagged particles in the wake) is simply 
proportional to the superimposed probability densities of a 
continuous line of sources moving with the mean velocity n 
with their time (Lmd space) origin at the actual fixed source. 

This is illustrated in figure 12(a) for $#<I. The circles 

(corresponding to isotropy) are the standard deviations of 
the dispersions that would occur from moving sources. The 
envelope of these circles gives a measure of the mean wake. 
It is obvious that in general the functional form of the mean- 
concentration distribution along a line As=Constant will not 
be the same as the functional form of the same quantity for 
the individual source at time t, that is, at position cc=gt. 
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AX 

Ax 

(a) +<I. S’(l)=.\-’ (X); y’(t) = y’ $ 
( > 

. 

(b) y<<1. 

FIGURE 12.-Propagation of turbulence from source moving wit,h mean 
velocity i7. 

However, it is extremely likely that if $$a (fig. 12(b)) 

the mean concentration along a line Ax=Gonstant becomes 
very nearly of the same functional form as that for the source 
at x=7%. For a zero-correlation Gaussian density, the 
equivalence is easi1.y demonstrable.3 

The condition dY’ 
x<<l will always occur at large enough 

values of Ax when g<l. This follows from the asymptotic 

3 The most general mathemntid restrictions under which the superposition of B line of 
identical densities will yield a “cross-section” density of the same form have not been studied 
here. It Is obvious that the condition of statistical independence is sufficient. The fact that 
the density of each of the velocity components in isotropic turbulence has been found to be 
Gaussian within the erperlmental precision seems to show that the equivalence under 
discussion is at least a good approximation. 

parabolic behavior, Y’(t) -fi (reference l), of fhe diffusive 
process. It will occur for all values of Ax when $33. There- 

fore, in this case a simple approximate space-time transforma- 
tion in the mean is permissible, and the t-variation in Taylor’s 
theory of diffusion by continuous movements becomes a 
variation of z/u. (It must be emphasized that the fore- 
going discussion does not apply directly to the possibility of 
applying a space-time transformation to the instantaneous 
turbulence variables. This latter question will be discussed 
later.) 

In the present measurements $<l, and, therefore, the Ax- 

variation of diffusion gives an approximate measure of the 
Lagrangian correlation coefficient (in time). Equation (2) 
can be rewritten as: 

DECAYING ISOTROPIC TURBULENCE 

When the turbulence is decaying in time (similar to space 
in the flowing turbulence) ;;?i is no longer constant, and the 
analysis cannot be carried out as far as equation (1). The 
same approach stops with 

y$ y”=v’(t) so’ v’(t- r)tRt-7dT (9) 

where the prime denotes root-mean-square value, and 

There is no a priori reason to believe that LRt--7 is a function 
of 7 alone, as in the nondecaying turbulent flow. 

At this point Taylor (reference 2) invokes the empirical 
fact that over a wide range of mean velocities (all of which 
give essentially the same distribution of v/p in x behind a 
grid) the thermal wake behind a line heat source at fixed x 
appears to be unchanged in form, within the experimental 
error. This is consistent with dependence of the diffusive 
process upon a variable of type 

S 1 1= to v’(h) dt, 
1 Z =- S 77 =o 

~‘(4 dxl (10) 

Therefore, Taylor has postulated the unique dependence of 
tR,-, on the variable 7. With this postulate and the space- 
time transformation valid for small turbulence level, he 
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arrives at 

or 

where 
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Equations (11) and (12) look like the equation for non- 
decaying turbulence. They also give 

A physical significance of the length 71 is underscored by 
the limiting form of equation (13) as v--+0 and X,+1. Then, 

y’=TJ 

so that 7 is a measure of the lateral diffusion that would 
occur if the lateral velocity fluctuation following a particle 
v(t) remained perfectly correlated but decreased in magni- 
tude according to the decay rate of the turbulence level. 

In postulating 1R2--r= R,(v), Taylor was apparently com- 
paring only diffusive processes in turbulence fields with 

identical g (x). Of more general interest is the comparison 

of diffusion in fields with differing turbulence-Ieve distribu- 
tions. Although such a generalized application of his postu- 
late is doubtless not too well applicable, it is conceivable it 
might have approximate success in the more general com- 
parison. For both convenience and lack of any obviously 
superior alternative, his suggestion is therefore applied in 
computing the results of the measurements reported here. 4 

With the v-postulate, the R, Lagrangian correlation func- 
tion can be obtained from measurements of y2 as a function 
of Ax: 

4 After this work was completed, 111’. Bntchelor suggested an alternative npproximate 
approach: In order to construct a stationary random function out of the nonstationary v(l) 
one firs1 normalizes the dependent variable with its root-mean-square value. (This has been 
automatically accomplished by use 01 the correlation coefficient.) If the decaying quantity 
is assumed to maintain complete similarity during decay, all characteristic times (e. g., 
Lagrangian time scale and microscale) vary in the same way with t and the new independ- 
ent variable is constructed by dividing r by this t-variation. Unfortunately, this variation 
is unknown a priori, so it would be necessary to assume further that the Lagrangisn scales are 
directly proportional to the Eulrrian scales, about which there is previousexperimental infor- 
mation. His work has now been published; see relerence 22. 

A scale and a microscale can also be defined for R,,: 

With nondecaying turbulence, no one-parameter true 
(time) Lagrangian correlation function exists, and the 
q-formulation is much more convenient. A further signifi- 
cance of this variable will appear in the comparison of 
Eulerian and Lagrangian treatments of diffusion from a line 
source in flowing turbulence. 

ACCELERATIONS IN DECAYING TURBULENCE 

A series expansion of v(~+T) for decaying turbulence will 
show something about the initial behavior of the true (time) 
Lagrangian correlation function and will indicate an experi- 
mental method for examining a hypothesis of Taylor on the 
interchangeability of instantaneous time and space deriva- 
tives when the turbulence level is low (reference 23). 

Write the Lagrangian correlation coefficient 

Substitute 

R&T)= v(t)v(t- T) 
v’(t)v’(t- T) (17) 

vct-T,=vct)-(~)LT+(~)l g+ . * * 

into numerator and denominator, and restrict the analysis 
to small values of 7: 

R&, 7) = 

Divide numerator and denominator by 2, expand the square 
root in the numerator, and keep terms in 7’: 

J-LW=l-[-($;): +m]& (1% 
For negligible decay rate this reduces to equation (6). 

Equa.tion (19) shows that a Lagrangian microscale defined 
b:: 

is expressible as 

~qEJygJ 
A” (0 2v2 

Gw 

(21) 



DIFFUSION OF HEAT FROM A LINE SOURCE IN ISOTROPIC TURBULENCE 11 

Introduction of Taylor’s v-postulate transforms equation 
(19) to 

(22) 

after the additional approximation that v’(v) -v’(O) when 
7] is very small. 

This gives a new expression for Lagrangian microscale X,: 

(23) 

Equation (23) is in contradiction to equation (17) of part 
IV of reference 2. In that work Taylor has apparently 
assumed that v’ is a nondecaying function of TJ. However it 
certainly is decaying, even in telms of this distorted coordi- 
nate, and the cZv’/dv-term must be included. 

Since X, and V’(Z) can be determined experimentally from 
the mean thermal wake behind a line heat source, equation 

(23) permits determination of -27 
0 

which is simply related 

s . yp)Z (@J. to the mean-square “Stokes” acceleration ;it 

This quantity is of particular interest for the possibility of 
an instantaneous space-time transformation at low turbu- 
lence levels. This was first proposed by Taylor (reference 23) 
and has since been used very widely, especially to get approx- 
imate values of partial derivatives with respect to 2 (the 
mean-flow direction) by measurements of time partial 
derivatives. 

The total (or Stokes) derivative of ~(2, ‘y, Z, t) in a turbulent 
tlow with mean velocity ualong the x-direction is 

Taylor’s hypothesis amounts to the statement that 

U,q” 
at 3X 

or 

with 

In detail, equation (25) is 

(244 

(25) 

(254 

In the absence of information on the algebraic sign of the 
triple correlation term, it, is sufficient to require the two 
conditions.” dv ( > F 1 

112 dt 
-2 dv 

<l 

VG ( > 

[ 

av av' 

ufu5 zGr$ G 

r;i""2 

( > ax 1 
l/2 

< 1 

(26) 

_1 

But 
( > 

g ‘ can be determined from measurements of Y’(x) ; 

av 
( > 

;;i - 
3X 

= 22, where X is the Eulcrian microscale (reference 2) ; 

and upper bounds, in terms of measurable functions, can be 

set on uluj **with t,he use of Schwarz inequalities. Thus, ax* ax’ 
an experimental check of the requirements in equation (26) 
is to be made in the section entitled “Computation of 
Results.” 

RELATlON BETWEEN EULERIAN AND LAGRANGIAN MICROSCALES 

Taylor (reference 2) inferred an approximate relation 
between X, and X by neglecting the effect of viscosity on 

pressure-gradient fluctuations and estimating 

being approximately 3 p [ vz [Ty”. This led 

ratio X,/X for all turbulence. The rough nature of this 
analysis induced Heiscnberg (reference 25) to conduct a 
more detailed study of the static-pressure fluctuations and 
to reestimate the X,/X ratio. Ho.bvever, he follo,wed Taylor 
in ignoring the dv’/dq-term in the relation between X, and 

see equation (23)) and in neglecting viscous terms in 

the relation betlvecn X, and 

Although these omissions are probably not serious except 
in the low Reynolds number range, it seems interesting, if 
only for the sake of completeness, to use a Heisenberg type 

of approximation for 

the omissions rectified. 

and to repeat his treatment with 

5 Lin has discussed the validity of Taylor’s hypothesis using a slightly different fc:muletion 
in reference 21. HI? points out there that if A = 2 B,, then (from the Schmerz inequality 

1 
where n. is a set of numbers. 
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From the complete Navier-Stokes equations in the wave- 
number space, Heisenberg deduced an approximate expres- 
sion for (VP)~ in terms of mean quadruple products of the 
“harmonics” of the velocity field. His principal simplifying 
assumptions were: 

(a) Different Fourier components of the velocity field are 
uncorrelated 

(b) The turbulent energy spectrum is given by the solution 
to his equilibrium-energy-transfer equation, above a lower 
cut-off wave number k, 

Following these, but using Chandrasekhar’s (reference 26) 
solution to the Heisenberg equation instead of the inter- 
polation formula used by Heisenberg, there results 

25.2 2 (v’)~ 
=yPvF (27) 

where K is a dimensionless empirical constant. 
The numerical constant in equation (27) would perhaps 

have been given more accurately by the use of a “self- 
preserving” spectrum (calculated by Chandrasekhar from 
Heisenberg’s equation) instead of the stationary spectrum 
with low cut-off wave number. Time was not taken to make 
the requisite additional calculations because: (a) The value 

of ap 2 
( > by 

depends principally upon the high-wave-number 

region of the velocity spectrum rather than the low-wave- 
number region, where the difference would be greatest, and 
(b) the experimental results and (especially) the value of 

K both have a considerable range of uncertainty. 
The mean square of the y-component of the Navier-Stokes 

equation will lead to a relation between A, and 1: 

therefore, 

(28) 

where the correlation between pressure gradient and velocity 
Laplacian function is zero because of isotropy. 

Equations (23) and (27) give the first two terms in terms 
of bhe microscales, and the mean-square Laplacian function 
is expressible in terms of the fourth derivative of the Von 
K&man-Howarth f(r) correlation coefficient at r=O (refer- 
ence 27): 

(29) 

Consequently, equation (28). becomes 

The second term in this equation can be replaced by the 

turbulence-decay equation 

d(v’)2 (V’Y -=-1ov 7 dt (30) 

whence 

so that 

dv’ I 
--&=-5+ 

2 Cd4 2 (v’)’ 
x,2+= x4= 

25.2 (v’)~ 35 
-y- v x3+3 v”(v’)“f”“(O) 

therefore, 
x2 -=- 
X,2 K Rx Rx2 (31) 

where Rk=fi- 
V 

Batchelor and Townsend (reference 19) have deduced an 
expression for f”“(O) which is valid in the region of decay 
where both l/(v’)” and X2 increase linearly with t (correspond- 
ing to large values of Rx): 

X4f i”(O,=y+; RxS (32) 

where S= -(?iJ/[ ,,,I,, 7 the skewness factor. Their 

experimental results showed S=O.39 approximately constant 
for isotropic turbulence. Then the estimate for X/X, 
becomes 

(33) 

The value of K was first estimated by Heisenberg (reference 
25), from measurements of turbulence decay, as 0.85. 
This method may be regarded as emphasizing the (relatively 
low wave number) energy-bearing range of the spectrum. 
Lee (reference 28) worked out an estimate based upon 
skewness factor (K=0.13), which gives heavy weight to the 
high-wave-number range. Proudman (reference 29) has 
reestimated K by comparison with measured curves of the 
double and triple velocity correlations. The value K=o.& 

leads to reasonably good agreement for the moderately 
high-wave-number region, over a wide range of values of Rx. 

It may be remarked that the supposed constancy of K is 
merely a postulate of the Heisenberg dimensional formulation 
of the spectral transfer function. In fact it is by no means 
obvious that this turbulent part of the transfer is quantita- 
tively independent of the amount of spectrally local dis- 
sipation to heat. In any case, Proudman’s estimate of 
K=0.45 has been used here. Therefore, 

(34) 

In the limit of Rx -+ 0, equation (34) does not apply since 
equation (32) does not apply. However, the appropriate 
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limiting relation can be obtained directly. In this limiting 
condition the pressure term in equation (28) is negligible 
compared with the viscous term (the former goes with 
l/Rx and the latter with ~/RA~), and the Eulerian velocity 
correlation coeffi&nt is (referentie 27) f(r) =e-r2/2k2. This 
gives ff’(0) =3/X4 and 

(35) 

EULERIAN ANALYSlS OF HEAT DIFFUSION FROM A LINE SOURCE 

The two-dimensionai turbulent-heat-transfer equation is 

where e is mean temperature, Q is temperature fluctuation 
about the mean, k is thermal conductivity, and c, is specific 
heat at constant pressure. 

For the thermal wake behind a line source in isotropic 
turbulence with constant mean velocity v=O. With 
restriction to low turbulence level, a “boundary-layer” type 
of approximation can be applied t,o the mean wake, so that 

- - 

and 

so that equation (36) takes the approximate form 

It must be emphasized that for this particular initial con- 
dition on the temperature (effectively a “point source”), 
the restriction to small turbulence level v’/u<<l does not 
imply that s’/S is small. In fact, for this problem St/6 is 
often greater than unity, especially at the “edge” of the mean 
wake, as has been discussed in reference 10 and will be 
brought out again later in the present report. 

When the molecular transport can be neglecteclyrelative to 
turbulent transport 

(38) 

an equation given in reference 10; a slight,ly-more general 
treatment follows: 

With a constant rate of heat generation (similar to steady 
state in the average), the application of a Van. K&man 
integral-relation treatment to equation (38) yields an integral 
condition: 

m 
2pe,u 

s 
6 dy=Constant=H (39) 

0 

where H is the average time rate at which heat-crosses all 
planes perpendicular to 3 per unit length of heat source 

(z-direction). Of course, % has been neglected relative to 
8Uin equation (39). 

Equation @@has two unknowns, and the first objective 
is to express% as a function of the (more easily measurable) 
&r,y). After integration with respect to y, 

But, by symmetry, %=O for y=O. Hence F(z)=0 and 

(40) 

This relation is sufficient for the computation of %(x,y) 
from the measured g&y) but the empirical fact of simple 
geometrical similarity in E(z,y) suggests exploitation of the 
consequent simplification. 

Assume 
ax, Y)=K44f(~) (41) 

where t= y/Y’(x). This transforms equation (39) to 

e,(x)Yyx)=g (42) 

where H*= 
H 

S 
m =Constant. It transforms equa- 

2PC, o f(E)& 

tion (40) to 

With equation (42), $,(x) can be eliminated from equation 
(43), and after integration of the dimensionless integrals this 
leads to the final form for the turbulent-heat-transfer 
correlation, 

(44) 

where 

The same sort of analysis can be made on equation (37) 
which includes the molecular conduction, but the rather large 
experimental scatter in the present measurements seems to 
make such a refinement inappropriate. 

An “exchange” coefficient or “diffusion” coefhcient for 
turbulent heat transfer k, is simply expressible in terms of 
6(x , y) . A conventional procedure for semiempirical analyses 
is to write for the turbulent transport an expression just like 
that for the molecular transport: 

which serves as the definition of k,. 
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For the simple case of equation (44), it turns out that 

kTcPGp$ gf@ y’(x) dY’ [ 1 df dX - 
dt 

(46) 

This has the particularly interesting property that in a 
nondecaying turbulence at very large values of x, where the 
mean thermal wake spreads parabolically (reference l), kT 
becomes independent of explicit dependence on x. 

A more startling simplification follows for a particular 
mean temperature distribution across the wake: All depend- 
ence of k, on y disappears if 

that is, if 
f (c;)=e+” (47) 

But this is the Gaussian function, which is found empirically 
to fit all the measurements within the experimental scatter. 
Hence one arrives at the empirical result that in both non- 
decaying and decaying turbulence k, is independent of y 
in the thermal wake behind a line source of heat. From 

df equation (47), dg= - (f (0 and 

- dY’ kT= pcpU Y’(x) dJ: (48) 

It can be seen that in the nondecaying case at very large 
values of x, k, is constant and independent of both y and x. 

RELATION BETWEEN SOME LAGRANGIAN AND EULERIAN 
PARAMETERS IN TRANSPORT 

There has apparently been little effort to relate the 
Eulerian and Lagrangian formulations of turbulent diffusion 
up to the present time. Exceedingly simple boundary con- 
ditions permit some connection to be made in restricted 
ranges of the present problem. 

For nondecaying or (with much less accuracy) decaying 
turbulence, eqtiation (13) applies: 

F=2 on(nJRn(m)dm s 
or, equation (12), 

dy2 -z 
do 

2ptdY’ 
dq 

=2 S ‘R,(w)dm 
0 

For small values of 7, R,= 1-G whence 

(49) 

Substituted into equation (44) these give 

while equation (46) becomes 

1 z where ?I== S u 0 
v’dx and [= In fact, 

for small values of 17, 7 -g 2. 

For low-level nondecaying turbulence, v=$ x, and equa- 

tion (51) becomes 

%=H*f(l)$ 

while equation (52) becomes 

As s+O both equations (51) and (53) reduce to 

u’y z=H*f (0 g ;- 

while equations (52) and (54) reduce to 

kT=pcpv’ 2% y (56) 

At the other extreme, when q is very large, 

y2=2 L-2M t n 1 
m 

where M1= S ~Z?,(V) dv =Constant and 
0 

In this case, 

and 
f(l) Y-h 

kl’=pcpvr dfJd4‘ [2(7,L,- M,)]“’ 

(53) 

(54) 

(55) 

(57) 

(58) 

(59) 

630) 

As indicated previousI)-, the a-variation can be expressed 
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in terms of 2 or t. 
If 7 is allowed to become large enough to make yL,>>Ml 

(6 1) 

(6% 

The above formulas take on particularly simple forms if 
the empirical result of a Gaussian-f(t) is utilized: 

Then the general expressions for z and k, (equations (44) 
and (46)) become 

(63) 

and 

k&z, y)=pc,Y’(x)~~ (64) 

the latter having been deduced in the previous section. The 
particular forms for small values of 71 would follow from sub- 
stitution of equations (49) and (50) into these two. 

However, the most interesting form occurs for very large 
values of 7. There Y’(x) is given by equation (57) and 

H*yL,$ 
DC’, “)‘=[2~L,-nii,)]3,2 esp 

~- (65) 

k&x, y)=pc,v’L,=Constant 

For still larger values of 7, such that Ml<<vL,, 

(66) 

(67) 

and 
kal’x, y)=pc,v’L,=Constant 

The constancy of k, for large values of 7 (large values of t 
or x) is to be expected; a treatment of molecular diffusion by 
this method must certainly yield a constant coefficient for 
times much larger than the mean free time (of flight) of the 
molecules-that is, for all “macroscopic times.” Put an- 
other way, the simple parabolic behavior of Y’ for large 
values of 1 is a sure indication that 5 obeys the simple 
classical diffusion equation with constant coefficient, when 
viewed extremely “coarsely.” 

Perhaps the chief interest of equation (66) is its identifica- 
tion of L, as a significant Lagrangian length for diffusion at 
a large distance from the source. It enters the expression 

for turbulent-diffusion coefficient in much the same way as 
mean free path enters the expressions for the molecular- 
diffusion coefficients. Furthermore, its role appears to be 
much like that attributed to Prandtl’s “mixing length,” 
which was brought into the turbulent-transport problem in 
a more or less intuitive fashion. 

Of course, the possible crude nature of Taylor’s original 
q-postulate may render the significance of L, more qualitative 
than quantitative in the case of decaying turbulence. 

COMPUTATION OF RESULTS 

Although Taylor’s assumption of the unique dependence 
of J?,-, upon 7 is not likely to be accurate for collapsing 
together cases with widely differing turbulence decay rates, 
it does provide a relatively simple relation between Y’(x) 
and fWd. Therefore all of the mean-thermal-wake data 
were reduced on the o-basis. 

In principle the complete R,(v) curve can be obtained from 
Y’(x) by double differentiation (equation (12)) 

or 
rz,=; -& (y2) 

R& ($)2 & (y’) 

(68) 

However, simple double differentiation of the squares of 
a curve as uncertain as Y’(x) seems almost hopelessly in- 
determinate-although Taylor (reference 2) and Collis 
(reference 7) have apparently followed this procedure. A 
somewhat more circumspect technique has been tried here: 
The values of X, and L, were determined first, through certain 
limit relations (to be described). Then the R, curve was 
cletermined by double clifferentiation, subject to the restric- 
tions of agreement with the previously determined scales. 
Thanks to rather poor determinancy of values of X, and L, 
this method is not so much of an improvement as it might 
first appear. 

LAGRANGIAN MICROSCALE X, 

If equation (13) is restricted to very small values of TJ the 
parabolic approsimation for X, can be introduced: 

therefore 
(69) 

whence 

(70) 

The computational procedure was to plot F/q* against q2 
and to estimate the slope of the faired curve at q=O where 
the curve must pass through unity. The abscissa intercept 
of the O-tangent is 6X:. The actual points, faired curves, 

II 
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7, in. 

(a) X,=0.36. 
(b) L,=O.43. 

FIGURE 13.-Determination of X, and L,; $‘=43.4, M=l inch, and 

i5=8.5 feet per second. 

and tangents for all cases are presented in figures 13 to 22. 
Clearly the precision is poor. 

LAGRANGIAN SCALE L, 

Consider equation (12) in the limit as v-+ ~3. It immedi- 
ately gives 

v 1) 

and the graphical procedure based on this is also presented in 
figures 13 to 22. Some of the asymptotic slopes drawn are 
not the best representation of the experimental points. This 
is due to the auxiliary (assumed) restriction that R, cannot 
increase with increasing values of 7 as long as R, has not 
previously dropped below zero. The graphical precision 
atta.inable is perhaps a little better here than that for A,,*, but 

6 - 
2 
72 

.4 - \ 
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\ 
.2 - \ 

\ 
\w (0) 

, I I , I I / 
0 .I .2 .3 4 .5 .6 .7 .s 

(a) X,=0.34. 
(b) L,=O.33. 

FIGURE 14.-Determination of X, and L,; $=43.4, &f=l inch, and 

c=25.6 feet per second. 

the square root necessary to get X, means that X, is determined 
about as well as is L,. 

LAGRANGIAN CORRELATION FUNCTION R,(,,) 

With X, and L, determined, the initial (small Ax) and &~a1 
(large Ax) behavior of the curve Y’ (AX) is prescribed. These 
parts of the curve were drawn on a graph with the experi- 
mental points. Then the fairing in of a reasonable cen- 
tral portion to this mean Y’(Az) curve was a relatively 
simple matter. The R, curve was then obt,ained by double 
differentiat,ion. 

The curves drawn for Y’(Ax) in figures 23 to 32 were de- 
termined in the fashion described above, as were the curves 
for R, in the same figures. 

EULERIAN MICROSCALE X 

In view of the approximate nature of the determination of 
X,, no new direct measurements were made of the Eulerian 
microscale X. Instead, x was computed with the energy 
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1.6 

0 n _ n 

.4 \ - \ O 
\ 

(a) I I I , 
0 .I .2 .3 .4 .5 .6 

72 

.4 

.3 

P, in. 

.2 

.I 

0 .I .2 .3 .4 .5 .6 .7 
q, in. 

(a) X,=0.27. 
(b) L,=O.33. 

FIGURE 15.-Determination of A, and L,; $=43.4, M=l inch, and 

c=38 feet per second. 

equation for isotropic turbulence, from the measurements of 
turbulence decay: - p=--10vn2 

dv*/dt (7 2) 

or, with the space-time transformation, 
7 x2=-lOv--- 

iyg 
dx 

(73) 

EULERIAN SCALE L 

Earlier investigations have shown that the Eulerian scale 
in a grid-produced turbulence is closely a linear function of 
the mesh size of the grid producing the turbulence (for a 
given value of x and grid geometry) and is not significantly 
dependent upon the mean velocity (or grid Reynolds num- 
ber, provided it is suflkient to cause turbulence). Therefore 
the values of L have been deduced from earlier measurements 

(a) X,=0.25. 
(b) L,=O.34. 

FIGURE 16.-Determination of X, and L,; $=43.4, M=i inch, and 

8=25.6 feet per second. 

at the California Institute of Technology (reference 18) on 
grids of essentially the same geometry. 

Table I summarizes the results for Lagrangian and Eulerian 
scales and microscales. The results have been grouped to 
sho.w the effect of systematic variation of one parameter at a 
time. Some of the results are presented in figures 33, 34, 
and 35. 

INSTANTANEOUS SPACE-TIME TRANSFORMATION 

The permissibility of an instantaneous space-time trans- 
formation in flowing turbulence, 

bV i av -z-=- 
ax 77 at 

(74) 

can be estimated in accordance with equations (26). For 
equation (74) to be valid, the sufficient requirements are those 
given in equations (26) that: 

. . . .._--.-- ~-.--. ---_. .._-.. 
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FIGURE li.-Determination of X, and L,; F1=43.4, df=$ inch, and 
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li2 
<<l 

With the aid of equation (23), the turbulence decay equa- 

tion, and the Taylor relation =2 $7 the first of these 

0 0 

F F 
0 0 

7 7 0 0 0 
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I ’ O O 
0 

.2 - \ 
\ 

1 6b2 (a) 
I I I I I I I 

0 .04 .08 .I 2 .I6 .20 .24 .28 .32 

7, in. 

(a) X,=0.22. 
(b) L,=O.23. 

FIGVRE lg.-Determination of X, and L,; %=86.1, Al=1 inch, and 

??=25.6 feet perysecond. 

conditions can be written in the form 

(75) 

From the Schwarz inequality, csscntially the necessity that 
the magnitude of any correlation coefficient belless than or 
equal to unity, 

(76) 

where the prime in:this espression denotes root-mean-square 



DIFFUSION OF HEAT FROM A LINE SOURCE IN ISOTROPIC TURBULENCE 19 

0 

2 - 
?2 \ 

.4 - \ O 
\ 

\ 
.2 - \ 

\ 
\ 6b2 

I I I (0) I , I \I 
0 .05 JO .I5 .20 .25 .30 .35 .40 

12 

7, in. 

(a) X,=0.24. 
(b) L,=O.25. 

FIGURE lg.-Determination of h, and L,; $=SS.l, M=a inch, and 

0=25.6 feet per second. 

value. For isotropic turbulence, equation (76) can be 
written 

(77) 

Thus, the second condition in equation (26) will be satis- 
fied if 

2.7 $<<I (78) 

Both T and v’/?? for the flows studied are presented in 
table I. It is clear that for these flows instantaneous z and t 
partial derivatives may be taken proportional with reasonable 
confidence. 

0 

(a) 
I I I , Vr I. , I , 

0 .02 .04 .06 .OS JO .I2 .I4 .I6 
12 

7, in. 

(a) X,=0.11. 
(b) L,=O.lS. 

FIGURE 20.-Determination of A, and L,; $$=86.1, iPI=+ inch, and 

5=25.6 feet per second. 

The Eulerian measure of transverse turbulent heat trans- 
port is computed from the mean temperature distribution. 
The dimensionless form, G/&g, is given for two typical cross 
sections in figures 36 and 37. 

The measurements of v’/D and of 8’/& permit calcula- 
G 

tion of the correlation coefficient Rso=Q1;;7, and this is also 

given in figures 36 and 37. 
For the convenient and reasonably accurate assumption 

of Gaussian mean temperature distribution, the correspond- 
ing turbulent-heat-transfer coefficient kT follows from equa- 
tion (64). It was found to be independent of y, and typical 
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FIGCRE 21.-Determination of A, and L,; 2j=1i2.3, AJ=$ inch, and 

g=25.6 feet per second. 

curves of kr/k are given in figure 38. The data for k, at 
three different speeds behind the l-inch grid are roughly 
collapsed together through division of kT by pcPvfL,,, as 
suggested by equation (66a), an asymptotic result for 
nondecaying turbulence (fig. 39). 

DISCUSSION 

LAGRANGIAN VARIABLES 

Even a cursory examination of the technique used in this 
investigation for the determination of Lagrangian correla- 
tion shows that, as physical measurements go, this method 
is a “bad” one, largely because of the inherent double 

\ 
(a) \ 6)1,2 

I 1 I I 1 I I IU 
0 .02 .04 .06 .08 .I0 .I2 .I4 .I6 

72 

0 .05 .I0 .I5 .20 .25 .30 .35 .40 
7, in. 

(a) h,=0.17. 
(b) L,=O.13. 

FIGURE 22.-Determination of X, and L,; -f=1i2.3, M=$ inch, and 

u=25.6 feet per second. 

differentiat,ion bekween measured variable and desired 
information. 

Figures 13 to 22 suggest an uncertainty in values of X, 
and L, as large as &20 percent, in spite of moderately good 
precision in the measurement of individual temperature 
distributions such as the lower curve in figure 3. 

As mentioned earlier, the values of v’n computed from 
initial wake spread are consistentay higher than those 
measured wit.h the hot-wire anemometer (reference 18). 
The same relative result was encountered during a brief 
investigakion following that reported in reference 18. Up 
to the present time there has been no satisfactory explana- 
tion of the discrepancy. A tentative hypothesis which would 
at least account for its direction may be based upon a human 
weakness in the visual averaging of the reading of a fluctua- 
tion pointer; there seems to be a tendency to choose an 
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FIGURE 23.-Spread of heat from a line source and correlation function 
R, for M= 1 inch, l7=8.5 feet per second, and $=43.4. 

“average” more or less halfway between the extremes of t,he 
needle travel. Thus a pointer motion with very skew prob- 
ability density (greater than 0) would tend to be “averaged” 
at too high a value. The thermocouple voltage in one of 
these thermal wake traverses has just this character (fig. 11). 
Hence a visual averaging might yield too high a wake width. 
If this effect is nonnegligible, it is advisable to employ some 
electrical means of avera,ging for skew signals, for example, 
the fluxmeter and bucking circuit described in reference 10. 

In view of the considerable uncertainty in X, as well as 
that in X and v’ the poor degree of agreement between 
experiment and theory shown in figure 33 is understandable. 
Since the two undetermined constants in the theoretical 
result have been evaluated from sets of experiments com- 
pletely independent of the present ones, this agreement can 
be viewed as an affirmative result. 

Since some sort of Lagrangian scale should be a significant 

.6 
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Y, in. 

.3 - 

(0) 
I I I I I 1 I 
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(a) Spread of heat from a line source. 
(b) Correlation function R,. 

FIGURE 24.-Spread of heat from a line source and correlation function 
R, for Al= 1 inch, v’= 25.6 feet per second, and 2x43.4. 

length in turbulent heat and mass transport, as demonstrated 
in the analytical section of this report, an effort has been 
made to find some systematic variation in the values of L,. 
Figure 34 might be construed to indicate a monotonic 
decrease of L,IL with increasing values of R,. It is inter- 
esting to note that a decrease was also observed for the 
ratio of mixing length to tube radius by Nikuradse (reference 
30) in fully developed turbulent tube flows. In order to 
determine whether these two rates of decrease with increasing 
Reynolds numbers are of the same order of magnitude, an 
estimate has been made of the magnitudes of R, correspond- 
ing to Nikuradse’s results given in figures 28 and 29 of 
reference 30. Both scale-to-diameter ratio and average 
turbulent levels for various Reynolds numbers were esti- 
mated with the help of Laufer’s data on turbulent channel 
flow (reference 31) at various Reynolds numbers. The 
absolute level (i. e., the ordinate scale) of the resulting Zmm/L 
against RL curve was adjusted to give the most reasonable- 
looking fit with the L,/L data. This is the dashed line in 
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FIGURE 25.-Spread of heat from a line source and correlation function 
R, for &f=l inch, 3=38 feet per second, and %=43.4. 

figure 34 and it shows at least a qualitative resemblance. 
It is likely, however, that L,IL is not a unique function of 

RL. 
Of course not all of the scatter in figures 34 and 35 (involv;: 

ing L,) can be attributed to simple lack of experimental 
precision. Some is evidence of the fact that the Taz 
postulate of Lagrangian correlation function being uniquely 
a function of 7 is certainly not very closely true. Further- 
more, table I does show rather systematic variations of L, 
in some of the three-point groups. Most noticeably, there 
is a regular decrease in L, with increasing x,/M (or perhaps 
with decreasing v’m) for each of the three grids. 

TEMPERATURE-FLUCTUATION FIELD 

Fairly close behind a line heat source in turbulent flow, 
the random pulse nature of the temperature fluctuations at a 
fixed point has been established by the oscillogram in refer- 
ence 10. This is confirmed by the first two oscillograms in 
figure 11, with their highly skew probability densities at 

Ax, in. 

17, in 
(a) Spread of heat from a line source. 

(b) Correlation function R,. 
FIGURE 26.-Spread of heat from a line source and correlation function 

R, for &I=$ inch, E=25.6 feet per second, and $=43.4. 

Ax/M=lO. One of the objectives of the present investi- 
gation was to find out whether this distinctly pulsed char- 
acter persisted far downstream or whether molecular heat 
conduction becomes increasingly effective in smearing out 
the pulses, until they are no longer distinguishable as such. 
The third oscillogram and probability density in figure 11 
(AX/M=~O) does show a decided trend away from the pulse- 
type signal. The molecular broadening of the laminar wake 
(corresponding to the pulses) decreases the relative spacing 
of the pulses in b(t) at any point in the “turbulent wake” 
region. This is a reduction in relative length of the flat 
@=O) base lines between pulses, giving greater statistical 
symmetry in d(t) about its mean, that is, reducing the skew- 
ness of P(6). 

A simple analysis will show the existence of an asymptotic 
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FIGURE 27.-Spread of heat from a line source and correlation function 

R, for M=$ inch, 7=25.6 feet per second, and %=43.4. 

behavior of molecular-conduction effects in a nondecaying 
turbulence. For a nondecaying flow turbulence and very 
large values of t( =x/n) the mean-square wake spread due 
to turbulent motion is 

I 
Y2x2L vz n- u (7% 

On the other hand, an approach to molecular diffusion 
through Taylor’s concept of “continuous movements” gives, 
for any macroscopic distance downstream, the mean-square 
thermal wake width, 

Y,1=2n+-c (80) 

where A is the mean free path and c is the root-mean-square 
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I I I I I I I I 
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(a) Spread of heat from a line source. 
(h) Correlation function R,. 

FIGURE 28.-Spread of heat from a line source and correlation function 

R, for Al=1 inch, 8=25.6 feet per second, and $=86.1. 

molecular velocity. 
From equations (79) and (SO) 

7 I I A c 
( > 

II2 
+= -- L, v1 w 

For a typical case, take L=l centimeter, v’=lO centi- 
meters per second, A=GX10P6 centimeter, and c=5XlO’ 

centimeters per second. Then F ~0.17. For people accus- 

tomed to thinking of molecular transport as negligibly small 
in turbulent flow (e. g., in shear flow), this ratio will appear 
quite large. The values of k,/k plotted in figure 38 also 
show that at these low turbulence levels the molecular 
thermal conductivity is not necessarily negligible compared 
with the turbulent transport. 
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FIGURE 29.-Spread of heat from a line source and correlation function 

R, for ME+ inch, D=25.6 feet per second, and $=SS.l. 

The t.emperature-fluctuation-level distributions fi’/c across 
the wake (figs. 10 (a) and 10 (b)) show the same character 
as that measured at much higher turbulence level in a jet 
(reference lo), with somewhat lower minimum values, which 
are attributable to the lower turbulence level. A rough 
evaluation of the behavior of the statistical variables in this 
turbulent thermal wake is obtainable by recalling that it 
consists of a randomly “waving” laminar thermal wake. If 
6(t) is crudely represented by a randomly spaced sequence 
of identical rectangular pulses with height b,, width j, and 
average spacing s, it is easily seen that 

(83) 

This permits ~‘6 to vary between 0 and 03 as s{j travels the 
permissible range from 1 to a. Since points nearer the edge 

Ax,in 

(b) 
I I I 

0 .I .2 .3 .4 .5 .6 .7 .8 
1, in. 

(a) Spread of heat from a line source. 
(b) Correlation function R,. 

FIGURE 30.-Spread of heat from a line source and correlation function 

R, for M=i inch, 6=25.6 feet per second, and ~=SS.l. 

of the turbulent thermal wake have higher values of s/j, the 
behavior of equation (83) is consistent with the experimental 
distribution. If the analysis were repeated with triangular 
pulses, for example, the quantitative estimate would doubt- 
less be more realistic. The higher values of (S’/e),,, en- 
countered at higher values of v’/u are an indication that 
for a given width of laminar thermal wake, the higher value 
of v//u leads to a higher minimum value of s/j. 

The closely Gaussian shape of e/G0 against y has already 
been pointed out. If 

g=exp [-a $&I 

be introduced, there results 

z-- 10, B’-(~exp[i!i&]-l\l’z (84) 

_- - 
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FIGURE 31.-Spread of heat from a line source and correlation function 

R, for &I.=+ inch, E=25.6 feet per second, and $=172.3. 

and 

;=exp[-;&] {~exp[&+l]li2 (85) 

Both of these expressions have behavior consistent with the 
experiments. 

The form of dimensionless transverse turbulent-heat- --- 
transfer rate Sv/e,U can be deduced for small values of Ax 
(such that R, = 1) with this pulse representation of s(t). In 
this picture, 202) is the correlation between a continuous ran- 
dom variable v and a random pulse signal 6 which ‘(fires” 
every time the continuous variable passes through a specific 
value 

Therefore 
z3i Y r 

s Ax 

Ax, in 

(a) Spread of heat from a line source. 
(b) Correlation function R,. 

FIGURE 32.-Spread of heat from a line source and correlation function 

li‘, for M=i inch, ??=25.6 feet per second, and %=172.3. 

where s and 6 are functions of y. With Gaussian e(y), 

290 =-=y exp [-a&] 
g,TT Ax 

The direct comparison between this crude picture and the 
experimental results will be confined to the correlation co- 
eficient RG, = 92)/6’v’. This is of particular interest in view 
of the surprisingly high experimental values. With equa- 
tion (85) and the fact that ‘u’~=Y’/~x, there results 

This contains the undetermined constant SO/G,, which can 
be obtained from any one of several experimental results. 
Figure 36 includes one plot of equation (88) with $&, de- 

--- 
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termined from equation (84) and the experimental value of 
(0’/6),i, and one plot with s,,$ determined by matching 
equation (88) with the experimental result at y/Y’=l.4. 

It is also surprising to find that the experimental (Riro)maz 
at large values of AX is even larger than that, at small va.lues 
of Ax. This may be due to a considerable experimental 
error; the resistance-thermometer voltage signal is much 
lower here. Unfortunately no relation corresponding to 
equation (88) has been deduced for large values of Ax, 
where R, is essentially zero. 

The criteria for Taylor’s hypothesis of t,he intcrchange- 
--b a 

ability of instantaneous space U - and time - derivatives 
dX at 

(assumed by him to depend only upon turbulence level) 
have been expressed in equations (75) and (78) as functions 
of turbulence level Rx and X/X,. If X/X,, is replaced by its 
theoretical expression (equation (34)) in terms of R,, 
equation (75) becomes 

I I I I I I (b) 

.4 .8 1.2 1.6 2.0 2.4 2.8 
Y 7 Y 

z (a) G against c 
eou Y’ 

(b) X,9, against y/Y’. Dashed curves are result of analysis based on 
rectangular temperature pulses. 

FIGURE 36.-Heat-transfer correlation across thermal wake, computed 
from measured mean temperat,ure distribution. u=25.6 feet per 
second, fir=1 inch, s,=43.4 inches, and As=10.5 inches. 
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FIGURE 37.-Heat-transfer correlation across thermal wake, computed 
from measured mean temperature distribution. E=25.6 feet per 
second, M=l inch, x,=43.4 inches, and A~=70 inches. 

For estimates of most flows the first term in the parentheses 
can be neglected; values of Rx less than 5 or 10 are rare. 

Since equation (34) has now been roughly verified by 
experiment, equations (89) and (78) may serve as approxi- 
mate criteria for the validity of Taylor’s hypothesis. 

In the limit of Rx-+0 when equation (35) replaces equation 
(34), there follows a simpler criterion to replace equation (75) : 

SUMMARY OF RESULTS 

The following results were obtained from the investiga- 
tion of the diffusion of heat from a line source in isotropic 
turbulence. 
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(a) Turbulent-heat-transfer coefficient at three airspeeds. M= 1 inch 

and $=43.4. 
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FIGURE 38.-Turbulent-heat-transfer coefficient for three airspeeds 
and two different grids. 
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FIGURE 39.-Dimensionless turbulent-heat-transfer coefficient. 

%=43.4 and M=l inch. 
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1. The thermal wake behind a heated wire set perpendic- 
ular to a flowing isotropic turbulence (at sufficiently low 
wire Reynolds number) consists of a randomly “waving” 
thin, laminar, thermal wake whose variations in lateral posi- 
tion give what may be called the turbulent thermal wake. 
At a fixed point not too far behind the wire the instantane- 
ous temperature difference 9(t) is a random pulse function, 
and the nature of the turbulent heat transfer can be deduced 
on this basis. Farther dolvnstream the distinct pulse nature 
tends to disappear. 

2. The mean transverse temperature distribution $ (y) 
0 

appears to be Gaussian within the experimental precision 
for all distances behind the wire. 

3. An Eulerian analysis of this turbulent-heat-transfer 
problem permits computation of the turbulent-heat-transfer 
coeffic.ient k, which is essentially constant with respect to 
the distance in the direction of the measured diffusion y for 
these boundary conditi0n.s. It is found that at low turbu- 
lence levels (approximately equal to 1 to 2 percent) the 
molecular heat transport is not vanishingly small compared 
with the turbulent heat transport. 

4. Although Taylor’s postulate that Lagrangian correla- 
t.ions in decaying turbulence can be made similar by int,ro- 

S t 
duction of an independent variable v= v’ (t)dt (where t is 

0 
time and v’ is the root-mean-square instantaneous veloc- 
ity fluctuation in the y-direction) seems to be an oversim- 
plification, it has been applied here for convenience in the 
reduction of data. A simple comparison of Eulerian and 
Lagrangian analyses for diffusion in nondecaying turbulence 
shows that for large values of the distance from the heat 
source Ax the Lagrangian scale L, enters the expression for 
kT, the turbulent-heat-transfer coefficient, much like the 
empirical mixing length in the old turbulent transport the- 
ories. Therefore some properly modified generalization of 
Taylor’s q-postulate should prove useful. 

5. A correction and generalization of Heisenberg’s theo- 
retical expression for the ratio of Eulerian to Lagrangian 
microscale X/X,, as a function only of the turbulence Rey- 
nolds number based on microscale RA has been made and 
seems to agree roughly with experiment. It must be noted 
t,hat since X, depends only upon a transformation dv=v’dt, 
and not upon the integral postulate stated above, its valid- 
ity is not impaired by any failure of the integral postulate 

6. Taylor’s hypothesis for the interchangeability of space 
and time derivatives at low turbulence levels has been ex- 
pressed in terms of criteria which depend upon turbulence 
level, Reynolds number, and X/X,. Applied to the flows 
studied here it shows that in these cases such a transforma- 
tion is permissible. By substitution of the theoretical ex- 

pression for f (Rx), a slightly simpler and rougher criterion 

is derived, deiending only upon turbulence level and Rx. 

THE JOHNS HOPKINS UNIVERSITY, 
BALTIMORE, MD., June 5, 1951. 
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